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A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is
analogous to the deformation of an algebra of observables such as deformation quantization, but for an
imaginary deformation parameter �the Planck constant�. Gauge symmetries of thermodynamics and corre-
sponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and
gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An
application of the formalism to a description of systems with distributed parameters in a local thermodynamic
equilibrium is considered.
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I. INTRODUCTION

A geometric description of thermodynamic systems has a
long history and was initiated by Gibbs �1�. In this approach,
equations of state of a thermodynamic system are repre-
sented by a surface in a space of thermodynamic parameters.
Later this geometric formalism was developed in the works
�2–5� on axiomatic foundations of thermodynamics, where
its laws were formulated in terms of differential forms. Due
to Hermann �6�, symplectic and contact geometries acquire a
distinctive form in thermodynamics, though some elements
of these geometries were introduced by Gibbs as well. No-
tions of symplectic, contact, Riemannian, and Finslerian ge-
ometries in thermodynamics get a further development in
Refs. �7–15�. Since the symplectic structure arose, a strong
analogy of thermodynamics with classical mechanics and op-
tics was understood soon afterwards �16–22�. Thermody-
namics was realized as a Hamiltonian dynamical system. The
next logical step is to “quantize” such a dynamical system in
order to describe its fluctuations, as it was posed in �17�. At
the same time this “quantization” is not a quantal one, which
is given in �22�, but has to result in a Fokker-Planck-type
equation for a probability distribution of thermodynamic
variables. The inverse procedure of “dequantization” �the
weak noise limit� of the Fokker-Planck equation is of com-
mon knowledge �23–25� and also endows thermodynamics
with the symplectic structure. In this paper, we shall see that
the desired “quantization” is a stochastic deformation proce-
dure proposed in �26�, which is an analog of the algebraic
approach to quantization known as deformation quantization
�27–30�.

A theory of fluctuations of thermodynamic quantities is
well-known both for equilibrium �31� and nonequilibrium
processes, and has a huge literature �see, e.g., �24,32–40��.
Thus the aim of “quantization” lies in a construction of sto-
chastic mechanics1 by means of a procedure similar to an
ordinary quantization, while it should give rise to the stan-

dard theory of fluctuations and be equivalent to operator
methods of stochastic mechanics �42–45�. Stochastic defor-
mation applied to thermodynamics complies with these re-
quirements and reproduces known operator methods in some
particular gauges. Gauge transformations and gauge fields
are necessary ingredients of stochastic deformation. Further-
more, as we shall see, they are intrinsic to thermodynamics.
Transformations of this kind arise occasionally in the litera-
ture �25,46� as some tricks to prove, for example, an equiva-
lence of the Doi �47–50� and Martin-Siggia-Rose �42,51–55�
formalisms �56�, or to establish certain properties of the op-
erator’s spectrum of the master equation, or they appear in
the form of nonstandard inner products �24,37,57�, or as the
� degree of freedom in Umezawa’s thermo field dynamics
�58�, and so on. As long as thermodynamics and stochastic
mechanics have such symmetries, it is of importance to rep-
resent their governing equations in an explicitly invariant
form such as, for example, representing the Maxwell equa-
tions in an explicitly Lorentz and gauge covariant fashion.

Stochastic deformation of the thermodynamic symplectic
structure reveals, first, a perfect analogy of thermodynamics
and stochastic mechanics on the one hand with classical me-
chanics and its quantum deformation on the other hand. Sec-
ond, it allows us to discover natural gauge structures of ther-
modynamics and stochastic mechanics and formulate them in
gauge invariant forms. In comparison with the standard op-
erator approach to stochastic mechanics, we effectively in-
troduce an additional Stückelberg field and corresponding
gauge fields, which result in gauge invariant dynamics. A
significant feature of these rather formal manipulations is
that the Stückelberg field possesses a physical interpretation.
It is an entropy of the thermodynamic system, while the
gauge fields are external thermodynamic forces acting on it.

It is worthwhile to mention the works that are intimately
related to the subject matter of the present paper. A probabi-
listic stochastic deformation of a linear symplectic structure
was studied in Ref. �59� within the framework of Zambrini’s
Euclidean quantum mechanics �60,61�. The latter stems from
Schrödinger’s works �62� made in attempt to give a stochas-
tic interpretation to quantum mechanics. In Ref. �63�, La-
grangian and Hamiltonian descriptions of Smoluchowski dif-
fusion processes are given as a special case of the general
formalism based on diffusion-type equations. Notice also
that something similar to the gauge fields we are about to
consider arose in �38�. Gauge transformations, but of a dif-
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1To avoid misunderstanding, we point out that we use the term

“stochastic mechanics” in a general sense like a notion that unifies
various physical models with dynamics obeying some kind of mas-
ter equation. It is not Nelson’s stochastic mechanics �41�.
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ferent type, were introduced into thermodynamics in �12�.
The paper is organized as follows. We start with a formu-

lation of thermodynamics in terms of symplectic geometry
�Sec. II�. Then we realize nonequilibrium thermodynamics as
a certain Hamiltonian dynamical system and establish its
gauge invariance. Here we also introduce gauge fields and
provide their physical interpretation. In Sec. III, we consider
a stochastic deformation of the obtained Hamiltonian dy-
namical system and investigate some of its properties. We
introduce an operator of dissipation, which is the stochastic
analog of a dissipation function �34�, and express an entropy
production through it. As an example we apply the formal-
ism to a thermodynamic system being in a local thermody-
namic equilibrium. In conclusion, we outline the prospects
for further generalizations and research. We assume Ein-
stein’s summation rule unless otherwise stated. Latin indices
run from 1 to d, where d is a number of extensive variables,
and zero index corresponds to time.

II. THERMODYNAMICS

All the statistical properties of a quantum system in a
thermostat are determined by the partition function

Z�p1, . . . ,pd−1,xd� ª Tr exp�− �
i=1

d−1

pix̂
i� , �1�

where x̂i are quantum operators of additive integrals of mo-
tion, xd is some fixed extensive variable, for instance, the
volume, and pi are intensive parameters thermodynamically
conjugate to x̂i or thermodynamic forces. The Hamiltonian
and the reciprocal temperature are among these conjugate
pairs. Differentiating the partition function with respect to pi
and making the Legendre transform, we arrive at the first law
of thermodynamics,

dS�x� = pidxi, �2�

where xi are averages of the corresponding operators, S�x� is
the entropy of the system, which is the Legendre transform
of the Massieu function �5� �ª−ln Z, and we introduce the
intensive parameter pdª�dS�x� conjugate to xd. In geometric
terms, the first law �2� endows the space of states �x , p� of a
thermodynamic system with a symplectic structure specified
by the symplectic potential �ªpidxi−dS. According to Eq.
�2�, the system is confined to the Lagrangian surface of the
symplectic 2-form d�. Inversely, any Lagrangian surface
uniquely projectable to the space of extensive variables �xi	
can be locally represented by the equality of the form �2�
�see, e.g., �18��. For reasonable physical systems, the La-
grangian surface is uniquely projectable, otherwise a change
of thermodynamic forces does not vary extensive param-
eters, that is, we have a system with zero �generalized� com-
pressibility.

In nonequilibrium with the thermostat, the thermody-
namic system moves along the Lagrangian surface. Besides,
if we directly �not by means of intensive parameters� change
the entropy of the system, the Lagrangian surface �2� also
evolves. A natural generalization of the first law to nonequi-
librium processes looks like

dS�t,x� = pidxi − H�x,p,t�dt , �3�

where H�x , p , t� is a thermodynamic force conjugate to time
or the Hamilton function.2 The Hamilton function taken on
the Lagrangian surface is a source of the entropy and it van-
ishes if the functional form of the entropy does not change.
The nonstationary first law �3� represents the Hamilton-
Jacobi equation. It is valid when it is reasonable to attribute
certain values of intensive parameters to the whole thermo-
dynamic system.

The requirement that the system should be confined to the
Lagrangian surface restricts the form of the Hamilton func-
tion. Here we consider two equivalent mechanisms for how
to keep the system on the Lagrangian surface,

Ti ª pi − �iS = 0. �4�

The first one is a “rigid” method. We demand that Ti are
integrals of motion of the Hamilton system associated with
Eq. �3�. A general form of a regular in momenta Hamilton
function meeting this requirement is

H = c�t� − �tS + Ti�
i�t,x� +

1

2
Tig

ij�t,x�Tj + ¯ , �5�

where � i and gij =gji are some contravariant tensors, dots
denote the terms of higher order in Ti, and c�t� is some
function. Redefining the entropy, we eliminate the latter
function. Then for a stationary entropy, the Hamilton func-
tion �5� is zero on the Lagrangian surface. The Hamilton
equations of motion of the thermodynamic system become

ẋi = �xi,H	 
 � i, Ṫi = �tTi + �Ti,H	 
 0, �6�

where curly brackets denote the Poisson brackets, and ap-
proximate equalities mean that we take equations on the La-
grangian surface �4�. Now we see that the vector field � i

describes a drift of the system. The tensor gij and higher
terms in the expansion �5� gain a physical meaning only
upon stochastic deformation of the Hamiltonian system,
which will be considered below. They are responsible for a
probability distribution law of fluctuations of statistical aver-
ages.

The Hamiltonian action functional associated with �3� is
obvious. If the expansion of the Hamilton function �5� termi-
nates at the term quadratic in Ti and the tensor gij is nonde-
generate, it is not difficult to obtain a Lagrangian form of this
action,

S�x�t�� =� dt�1

2
gij�ẋi − � i��ẋj − � j� +

dS

dt
 , �7�

where gij is the inverse of gij. This functional is the well-
known Onsager-Machlup action �34–36�. It measures an en-
tropy change along a trajectory x�t�. The first term measures
an additional entropy production caused by fluctuations de-
viating intensive parameters of the system from the Lagrang-
ian surface. This term vanishes in the thermodynamic limit

2Of course, this Hamilton function is not related, at least immedi-
ately, to the Hamiltonian entering the partition function �1�. In
�39,40� this thermodynamic force is called the kinetic potential.
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�6�. The second term is a change of the thermodynamic en-
tropy. The principle of least action corresponding to Eq. �7�
says that the system moves to equilibrium with a minimum
of the entropy production. Therefore, the first term has to be
non-negative for an arbitrary trajectory and the tensor gij

must be positive definite. Further, if the fluctuations are de-
scribed by a general Markov process, it can be proven �40�
that �p

ijH should be positive definite.
Under the above restrictions on gij, any drift vector field

can be represented in the form

� i = gij�� jS − Aj� , �8�

where Ai�t ,x� is some local 1-form, which we shall call the
gauge field. The quantity in the brackets is the total thermo-
dynamic force, while the gauge field Ai is the external force
exerting on the system. In particular, the Onsager principle
�32� postulates the drift �8� and that the thermostat acts on
the nonequilibrium system as

Ai�t,x� = �iS�t,x0� , �9�

where x0
i is the solution of Eq. �4� at fixed intensive param-

eters pi characterizing the thermostat. To provide a stability
of the state x0 of the system, we have to require a negative
definiteness of the Hessian �ijS�x0�, otherwise the system is
in a phase transition state. If the total thermodynamic force is
given, the relation �8� can be only a linear approximation to
a nonlinear response of the system to the uncompensated
force. Besides, there are systems that do not obey the On-
sager principle �see, for physical examples, �24,33,45,53��.

The first law �3� with the Hamilton function �5� is invari-
ant under the following gauge transformations:

pi → pi + �i��t,x�, Ai → Ai + �i��t,x� ,

S�t,x� → S�t,x� + ��t,x� . �10�

Their existence reflects the fact that a gradient part of the
external force can be attributed to the system itself redefining
its entropy. In other words, these transformations relate
equivalent thermodynamic systems �system�+ �thermostat�.
They are not distinguishable within thermodynamics since
the total forces do not change under the gauge transforma-
tions �10�.

Now we are in a position to introduce the second method
to confine the system to the Lagrangian surface. This method
is, of course, equivalent to the first one and based on using
an auxiliary compensating field. We postulate that the first
law �3� is invariant under the gauge transformations �10�. In
addition, we seek the Hamilton function, which does not
depend on the entropy. Then a quadratic in momenta Hamil-
ton function3 providing gauge invariance to Eq. �3� can be
cast into the form of the Hamilton function of a charged
particle in an electromagnetic field,

H =
1

2
Pig

ijP j − A0 ¬ K�p,x� − A0, Pi ª pi − Ai, �11�

where A0�t ,x� is the auxiliary field transforming under the
gauge transformations as

A0 → A0 + �t��t,x� . �12�

It keeps an invariance of Eq. �3� with respect to nonstation-
ary gauge transformations. To confine the system to the La-
grangian surface determined by a given entropy function
S�t ,x�, we have to choose the compensating field A0 so that
the Hamilton-Jacobi equation is fulfilled,

A0 − �tS =
1

2
gij��iS − Ai��� jS − Aj� . �13�

If we substitute A0 from the Hamilton-Jacobi equation to the
Hamilton function �11�, we revert to Eq. �5� with the drift
vector field �8� establishing the equivalence of two ap-
proaches. The gauge invariant total force A0−�tS is the ki-
netic part K of the Hamilton function taken on the Lagrang-
ian surface. These two functions, A0−�tS and K, are different
representations of the dissipative function ��X ,X� intro-

duced in �34�. The entropy production �̇ in the whole system
�thermostat�+ �system� is standardly expressed in terms of
the dissipation function

�̇ 
 Pi
�K

�pi
= 2K , �14�

where we assume that the rate of an entropy change of the
thermostat is −�iAi.

Given K and A	 completely define the system and, in
particular, its thermodynamic entropy through the Hamilton-
Jacobi equation. From a mechanical viewpoint, a thermody-
namic system �11� tends to an unstable equilibrium of the
potential −A0. That is, for any given x we take such an initial
momentum p that the “particle” hits precisely the equilib-
rium point with zero velocity. Although this point is unstable
equilibrium, it is of course an attractor on the Lagrangian
surface. Not any mechanical Hamilton function �11� having a
nonstable equilibrium point in its potential can serve as the
Hamilton function for some thermodynamic system even in a
neighborhood of this point. The “magnetic” field can freeze
the particle �such as in a magnetized plasma� so it never
reaches the equilibrium. Linearizing the particle’s equations
of motion in a small vicinity of the stationary point x0 and
assuming that the Hamilton function is stationary and the
fields entering it are smooth enough, one finds that for the
isotropic potential �ijA0�x0�=�gij�x0� the system never hits
the point x0 starting in an arbitrary point of its small vicinity
only if

�
i� � 4� �15�

for some i, where 
i are the characteristic numbers

det�Fikg
klFlj − 
gij� = 0, Fij ª ��i�A�j��x0� . �16�

In other words, the condition �15� reminds us that the gauge
fields Ai should enter the potential A0 according to the
Hamilton-Jacobi equation �13�.

3A generalization of these considerations to Hamilton functions of
an arbitrary order in momenta is straightforward, but has no such
suggestive mechanical analogy. Quadratic in momenta, Hamilton
functions correspond to a Gaussian distribution law of fluctuations
�-correlated in time.
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III. FLUCTUATIONS

Now we turn to fluctuations of statistical averages. As was
shown in �26�, these fluctuations can be obtained by stochas-
tic deformation of the corresponding Poisson structure. In
our case, we shall deform a canonical symplectic structure
associated with the thermodynamic system.

Let us briefly recall some basic features of an algebraic
stochastic deformation. For more details, an interested reader
can consult Ref. �26� and the classical works on deformation
quantization �27–30�. A commutative associative algebra of
classical observables is constituted by real smooth functions
over the symplectic space. We deform this algebra in a man-
ner of deformation quantization, but with an imaginary de-
formation parameter, such that

�x̂i, p̂j� = � j
i , �17�

where  is the real positive deformation parameter. Carets
signify elements of the deformed associative algebra and we
imply the Weyl-Moyal star-product �64�,

F̂Ĝ = �
n=0

�
1

n!
�

2
�n

�a1b1 . . . �anbn�a1¯an
F�z��b1¯bn

G�z� ,

�18�

where z��x , p�, an ,bn=1,2d, the functions F�z� and G�z�
are the Weyl symbols of the corresponding elements of the
deformed algebra, and �ab is the inverse to the symplectic
2-form �ab. The generators x̂i and p̂j of the Heisenberg-Weyl
algebra correspond to extensive and intensive parameters of
the thermodynamic system. The deformation parameter  is
not the Planck constant. It characterizes a variance of fluc-
tuations and, as we shall see, is equal to double the Boltz-
mann constant, =2kB, for thermal fluctuations.

Another necessary ingredient of the deformation proce-
dure is the trace functional Tr, which is a linear functional on
the deformed algebra mapping to real numbers and vanishing
on commutators. An explicit formula for the trace of an ele-

ment F̂ has the form

Tr F̂ =� ddxddp

�2��dF�x,ip� . �19�

A state of a stochastic system is characterized by an element
�̂ with a unit trace

Tr �̂ = 1. �20�

The pure state is specified by an additional idempotency re-
quirement

�̂2 = �̂ . �21�

An average of some observable F̂ over the state �̂ is defined
by the standard formula

�F̂� ª Tr��̂F̂� . �22�

Thus, for a correct probabilistic interpretation the state �̂
should satisfy

��d�x̂i − xi�� � 0, ∀ x � Rd. �23�

The dynamics of the stochastic system in the state �̂ are

generated by the element Ĥ of the deformed algebra, which
corresponds to the Hamilton function H�t ,x , p�, and obey the
von Neumann equation

�̇̂ = �Ĥ, �̂� . �24�

In the case of a linear symplectic space, it is useful to
realize the Heisenberg-Weyl algebra as operators acting in
the linear space V of smooth real functions on the configu-
ration space. Then, in Dirac’s notations, the pure state is
represented by4

�̂ = ������, ����� = 1, ��� � V, ��� � V*, �25�

where the standard inner product is understood. So, the pure
state is specified by two real functions on the configuration
space. For such states the von Neumann equation is equiva-
lent to two Schrödinger-Zambrini �SZ� equations �60,62�,

�t��� = Ĥ���, �t��� = − ���Ĥ . �26�

Hereinafter, for simplicity, we restrict ourselves to the case
of at most quadratic in momenta Hamiltonians. Besides, we
take the metric tensor gij to be a constant matrix.

After introducing the stochastic phase S̃�t ,x� and the
probability density function ��t ,x� to find a system with the
values of extensive parameters xi,

� = � exp�− −1S̃�, � = exp�−1S̃� , �27�

the operators of the total forces P̂	= p̂	−A	 have the aver-
ages

�P̂	� =� ddx��t,x��− �	 − A	�t,x����t,x� = ��	S̃ − A	� ,

	 = 0,d , �28�

where, for 	=0, we have used the equations of motion �26�.
Matching thermodynamics with its deformation, we should

identify the phase S̃ with the thermodynamic entropy S. Then
the SZ equations �26� are invariant with respect to the gauge
transformations �10� both with the Hamiltonian �5� and �11�.

Consider stochastic deformation of the Hamiltonian dy-
namical system �5�. With the above-mentioned identification,
one of the SZ equations �26� is identically satisfied,

�t��� = − ����− �tS + T̂i�
i�t, x̂� + 1

2 T̂ig
ijT̂j� , �29�

and the other equation becomes the Fokker-Planck equation
describing fluctuations of the thermodynamic system,

4Similar projectors also arise when describing projected processes
�37�.
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�t� = − �i�−


2
gij� j� + �i�� . �30�

We see that the coefficients of expansion �5� in terms of Ti
are merely the cumulants of the probability distribution of
fluctuations.

Deforming the Hamiltonian dynamics generated by Eq.
�11�, we arrive at two equations: the Fokker-Planck equation
�30� and the Hamilton-Jacobi equation �13�, with stochastic
correction or the Burgers equation �61�,

A0 − �tS =
1

2
gij��iS − Ai��� jS − Aj� +



2
�i�gij�� jS − Aj�� ,

�31�

defining the dissipation function A0−�tS. The form of gauge
transformations �10� and the representation �27� show that
the gauge group is the Abelian one-dimensional Lie group
isomorphic to SO�1, 1�. The SZ equations can be rewritten in
an explicitly covariant form with respect to the gauge trans-
formations if we group the two functions ��x� and ��x� into
one vector ���x� and define the pseudo-Euclidean scalar
product of such vectors as

1

2
� ddx����x�������x�

=
1

2
� ddx����x�,���x���0 1

1 0
���x�

��x�  . �32�

Then the SZ equations �26� look like the matrix Schrödinger
equation

�t� = �Ĥ 0

0 − Ĥ+
� , �33�

where the cross denotes a conjugation with respect to the
standard inner product. The evolution is generated by the
matrix Hamiltonian, which is skew-adjoint with respect to
the scalar product �32�. On introducing the self-adjoint cova-
riant derivatives

P	�
�

ª − ��
���	��

� + ��
�A	� , �34�

where

��
� = �1 0

0 − 1
, �2 = 1, �T� = − �� , �35�

the SZ equations with the Hamiltonian �11� read

− P0� =
1

2
Pig

ijP j� . �36�

In this form, the SZ equations are very similar to the
quantum-mechanical Schrödinger equation. The difference is
that the generator � of the Lie algebra so�1, 1� appears in-
stead of the generator of u�1��so�2�. Further, the equations
of motion �36� are immediately generalized to a non-Abelian
case. If we have N identical thermodynamic systems in a
thermostat, then the global symmetry group for a whole
system will be SO�N ,N��Sp�N�. The symplectic group

Sp�N� arises since in the case of N identical systems the
matrix �� is the unit symplectic matrix, which must be pre-
served by the symmetry transformations. A detailed investi-
gation of peculiarities of non-Abelian systems and their
physical interpretation will be given elsewhere. Here we just
notice that the group SU�1, 1� locally isomorphic to
SO�2,2��Sp�2� /SO�1,1� was studied in the context of gen-
eralized coherent states �65–68�. The pair �� ,�� is the ana-
log of an almost generalized product structure on the Whit-
ney sum TM � T*M �see, for example, �69��.

Let us consider how some standard thermodynamic rela-
tions look in our framework. The condition of a detailed
balance in the state ������ becomes

��x� � Ĥ � ��x� = ��x� � Ĥ+ � ��x� , �37�

where � means a composition of operators. That is, we can
make the gauge transformation so that �=�, the Hamiltonian

Ĥ= Ĥ+ having a nonpositive spectrum �see, e.g., �24,37,44��.
Then the stochastic phase is identified with a half of the
entropy of the whole system �thermostat�+ �system�. For
Hamiltonians of the form �11�, with nondegenerate metric
gij, the probability density function ��x� in this state is pro-
portional to exp�2−1��x��, where ��x�ªS�x�− pix

i, pro-
vided the Onsager principle �9� is fulfilled. Fixing the exten-
sive variable xd and applying the WKB method, we obtain
that the leading in  terms of the characteristic function
ln z�p ,xd� of the probability distribution � at fixed xd take the
form

ln z�p,xd� = 2−1 ln Z�p,xd� + Tr ln��p
ij��p,xd��/2 + ¯ .

�38�

Thus, we arrive at the well-known result that in the leading
order the correlators of statistical averages are proportional
to the correlators computed with the help of the partition
function �1�.

In the Heisenberg representation, the operator of the sys-
tem entropy change is

Ṡ̂ = �tŜ + −1�Ŝ,Ĥ� = �tŜ + �iŜ
�K̂

�p̂i

, �39�

where �iŜ� /�p̂i is a differentiation of the Heisenberg-Weyl
algebra acting on its generators in an obvious manner. Con-
sequently, the gauge invariant entropy production in the
whole system �thermostat�+ �system� is given by

�̇̂ ª ��iŜ − Âi�
�K̂

�p̂i

, �40�

where the dot is just a notation in the case of Fij�0. The
relation �40� is the stochastic �noncommutative� analog of its
thermodynamic counterpart �14�. It is reasonable to define
the operator of a purely fluctuational entropy production as

− ẋ̂iT̂i = − −1�x̂i,Ĥ�T̂i, �41�

which follows from a path-integral representation of its av-
erage. This kind of entropy production disappears in the ther-
modynamic limit. If the system with the Hamiltonian �11� is
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in the state, where the detailed balance takes place, the av-

erage entropy production �̇̂
˙

is zero. The average of the fluc-
tuational term becomes

− −1��x̂i,K̂�T̂i� = − �gij�ij�� = 2�gij�i�� j�� . �42�

It is positive and of the order of . This is valid in the leading
order in  for any Hamiltonian that allows a detailed balance.

Thus the entropy production �̇̂ is caused by equalizing large
�macroscopic� differences of intensive parameters of the sys-
tem and the thermostat, whereas the fluctuational term is
responsible for the entropy change made by equalizing small
�microscopic� differences of intensive parameters originating
from fluctuations. The microscopic deviations can be esti-
mated from the well-known thermodynamic uncertainty re-
lation �see, for example, �10��. In the state with a detailed
balance, we have �for a proof see, e.g., �26��

��xi�2����i��2� � 2/4 �no summation� . �43�

A natural generalization of the above considerations to
more realistic nonequilibrium systems possessing spatial gra-
dients of intensive parameters is straightforward. We reduce
the system to subsystems of a fixed volume, which are small
enough to have homogeneous intensive parameters and suf-
ficiently large to apply a thermodynamic description to them,
i.e., the system is in a local thermodynamic equilibrium.
Then the simplest model following from first principles of
thermodynamics �3� and �8� prescribes a diffusionlike evolu-
tion �5,12,32,70�,

�t�
a�t,x� =� dygab�x,y�� �S���

��b�t,x�
−

�S���
��b�t,y�� ,

gab�x,y� = gab�y,x� = gba�x,y� , �44�

where �a�t ,x� are densities of the extensive variables except
the volume, the functional S��� is the thermodynamic en-
tropy of the whole system, and gab is some positive definite
matrix for any x and y, which measures a linear response of
the extensive variable a of the subsystem in the point x on a
difference of thermodynamic forces b of the subsystems lo-
cated at x and y. The use of the linear-response relation is
justified by small �by construction� deviations of intensive
parameters of neighboring subsystems. The total values of
extensive variables are conserved by the evolution �44�. The
Hamilton functional of the form �11� corresponding to
Gaussian fluctuations becomes

H�t,�,�� =
1

4
� dxdy��a�x� − �a�y��gab�x,y���b�x� − �b�y��

− A0�t,�� , �45�

where �a are the intensive parameters canonically conjugate
to �a. If external thermodynamic force fields are applied, the
momenta should be replaced by the covariant derivatives
�11�. The Hamiltonian formalism is also preferred over the
Lagrangian one as the Onsager-Machlup action �7� is nonlo-
cal for local gab. The functional of a thermodynamic entropy
increases with the evolution �44� and acquires a maximum

when all the intensive parameters become homogeneous.
Upon stochastic deformation of the model �45�, we see

that the fluctuating system possesses the states in which the
detailed balance �37� takes place,

�/� � exp � 
a�a�x�dx , �46�

where 
a are some constants and the stochastic phase  ln �
is the thermodynamic entropy. We divide the whole system
into a thermostat and the system in it imposing the con-
straints

�����a�x� − pa� = ��a�x� − pa���� = 0. �47�

Here x runs points of the thermostat and pa are fixed values
of its intensive parameters. These constraints are preserved
by the evolution and just say that the intensive variables of
the thermostat do not fluctuate. The Hamiltonian correspond-
ing to Eq. �45� is Hermitian and has a nonpositive spectrum.
Hence any state of the system satisfying Eq. �47� tends to the
ground state described by the probability density functional
of the expected form

���� � exp�2−1�Ssys��� − �
sys

dx pa�a�x�� , �48�

where the integral is taken over the system in the thermostat
and Ssys��� is the thermodynamic entropy of this system. As

before, the average entropy production �̂ relative to this state
vanishes. For local gab, the density of fluctuational entropy
production is zero in the thermostat, while it is of the form
�42� in the system. As a matter of fact, the matrix gab�x ,y�
depends on the fields �a. A generalization to this case is
easily realized along lines �26,36,38�.

IV. CONCLUDING REMARKS

Let us mention some possible modifications and generali-
zations of the formalism evolved here. Notwithstanding we
distinguish extensive and intensive parameters, we did not
actually use these properties. If the thermodynamic system
possesses the “gauge” symmetry

xi�iS = S , �49�

i.e., S�x� is a homogeneous function, a division into intensive
I and extensive E variables is achieved by

�I ª �xiTi,I	 
 0, �E ª �xiTi,E	 
 E . �50�

As follows from Eq. �49�, the Hessian is degenerate. There-
fore, we have to fix the extensive parameter xd in Eq. �2� and
work in the sector of remaining extensive variables and their
conjugate. The fixed extensive parameter and its conjugate
are expressed in terms of the independent ones by means of
Eq. �49�. To put it in another way, we fix the “gauge.” The
division into extensive and intensive variables restricts ad-
missible canonical transformations of the phase space of a
thermodynamic system. Such a separation is preserved by
arbitrary changes of intensive parameters and only linear
transformations �with coefficients depending on the intensive
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variables� of extensive ones. In geometric terms, we realize
the phase space as a Lagrangian fiber bundle �18� with the
base parametrized by intensive variables and the fiber repre-
sented by the configuration space.

Sometimes it is useful to define an entropy of a thermo-
dynamic system not as the Legendre transform of �, but as
follows �see, e.g., �40,71��:

S̃�x� = ln�� dp exp��
i=1

d−1

pix
i − �� , �51�

where contours of integration in complex planes are taken so
that the integral converges. In a macroscopic limit, this defi-
nition coincides with the standard one, which is easy to see
using the WKB method. The extensive variables xi in Eq.
�51� are not averaged over the ensemble as in Eq. �2�. Rather,
they describe one system in it. The intensive variables char-
acterizing this system are taken, by definition, to be p̃i

ª�iS̃. They differ slightly from the intensive parameters pi
of the thermostat,

�iS̃ = �iS +
1

2
�ijkS�p

jk� + ¯ . �52�

Assuming the Onsager principle �9� is fulfilled, the system
with the Hamiltonian �11� and the entropy �51� decays to the
state where a detailed balance takes place. In this state, the
characteristic function �38� is strictly proportional to ln Z up
to an irrelevant additive constant.

An entropy of a thermostat is usually described by the
term −pix

i in the total entropy ��x�, since the intensive pa-
rameters of the thermostat are assumed to be nonfluctuating.
If such fluctuations become relevant, they can be naturally
taken into account in the formalism of stochastic deforma-
tion by introducing mixed states. These states are sums of
pure states with some weights

�̂ = �
p

�̂pe��p�. �53�

The function ��p� is proportional to the entropy of the ther-
mostat, while −pix

i mentioned above is the entropy of inter-
action, by analogy with the interaction part of an action func-
tional. The diagonal element of Eq. �53� is proportional to
the conditional probability �p�x�=��x��p�x�, though mixed
states are not exhausted by those.

The analogy with mechanics suggests also possible gen-
eralizations of a simple Hamiltonian model �11�. For ex-
ample, it is interesting to consider Hamiltonian dynamics on
a nonlinear symplectic space describing a thermodynamic
system. Passing into the Darboux coordinates, we see that a
noncanonical symplectic structure results effectively in a
changing of thermodynamic forces and the probability distri-
bution law of fluctuations. Noncanonical symplectic struc-

tures appear naturally �37,72� in the case in which small
deviations from the Gibbs distribution �1� exist,

xi = �p
i � + �i�p� , �54�

where �i is a small nongradient vector field. This equality
defines a Lagrangian surface of a noncanonical symplectic
structure with magnetic fields. For example �72�, if the den-
sity matrix of the system is proportional to
exp�−pix̂

i−
�pix̂
i�2 /2+O�
2��, where 
 is a small parameter,

then in the leading orders

xi = �p
i �0 − 
��p

ij�0pj − �p
i �0�p

j �0pj +
1

2
�p

ijk�0pjpk

− �p
ij�0�p

k�0pjpk + �p
i �0��p

j �0pj�2 + O�
2� , �55�

where �0ª−ln Z0 with Z0 taken from Eq. �1�. The last term
in the brackets is nongradient. Defining a thermodynamic
entropy as the Legendre transform of the Massieu function
�0, we arrive at the first law of thermodynamics with mag-
netic fields. The gradient part can be absorbed into the en-
tropy by a gauge transformation. Another evident generaliza-
tion of the model �11� consists in introducing non-Abelian
gauge fields. We only touched on the problem in Sec. III and
formulated the “matter” dynamics. The next step is to intro-
duce the action functional for the gauge fields. The gauge
symmetries of gauge fields’ action seem to be spontaneously
broken, though a form of the action and a mechanism of the
symmetry breaking are the subjects for further research.

Besides, we saw that quantum and stochastic mechanics
differ from each other by a symmetry group only. Namely,
the Heisenberg-Weyl algebra is a Lie algebra with commu-
tation relations

�e1,e2� = e3, �e1,e3� = �e2,e3� = 0, �56�

where e1, e2, and e3 are its generators and, for brevity, we
consider a two-dimensional phase space. This algebra in-
cludes an Abelian ideal spanned on e3. A general form of the
Lie group corresponding to this ideal is Un�1��SOk�1,1�. In
the two simplest cases n=1, k=0 and n=0, k=1, we obtain
quantum and stochastic mechanics, respectively. So, one can
speculate about their unification by introducing a larger
group containing the subgroups U�1� and SO�1,1�.
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